A is congruent to B modulo N, if N divides (A - B):
$$A \equiv B(mod\ N)$$L'Hôpital's rule
$$ \lim_{n\rightarrow\infty} f(N)/g(N) = \lim_{n\rightarrow\infty} f'(N)/g'(N),\\if\ \lim_{n\rightarrow\infty} f(N)=\infty, \lim_{n\rightarrow\infty} g(N) = \infty $$2016-03-17